Limits of Zeros of Polynomial Sequences

نویسندگان

  • XINYUN ZHU
  • GEORGE GROSSMAN
چکیده

In the present paper we consider Fk(x) = x k − ∑ k−1 t=0 x, the characteristic polynomial of the k-th order Fibonacci sequence, the latter denoted G(k, l). We determine the limits of the real roots of certain odd and even degree polynomials related to the derivatives and integrals of Fk(x), that form infinite sequences of polynomials, of increasing degree. In particular, as k → ∞, the limiting values of the zeros are determined, for both odd and even cases. It is also shown, in both cases, that the convergence is monotone for sufficiently large degree. We give an upper bound for the modulus of the complex zeros of the polynomials for each sequence. This gives a general solution related to problems considered by Dubeau 1989, 1993, Miles 1960, Flores 1967, Miller 1971 and later by the second author in the present paper, and Narayan 1997. Primary: 11B39, Fibonacci number

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities for the polar derivative of a polynomial with $S$-fold zeros at the origin

‎Let $p(z)$ be a polynomial of degree $n$ and for a complex number $alpha$‎, ‎let $D_{alpha}p(z)=np(z)+(alpha-z)p'(z)$ denote the polar derivative of the polynomial p(z) with respect to $alpha$‎. ‎Dewan et al proved‎ ‎that if $p(z)$ has all its zeros in $|z| leq k, (kleq‎ ‎1),$ with $s$-fold zeros at the origin then for every‎ ‎$alphainmathbb{C}$ with $|alpha|geq k$‎, ‎begin{align*}‎ ‎max_{|z|=...

متن کامل

On the $s^{th}$ derivative of a polynomial

For every $1leq s< n$, the $s^{th}$ derivative of a polynomial $P(z)$ of degree $n$ is a polynomial $P^{(s)}(z)$ whose degree is $(n-s)$. This paper presents a result which gives generalizations of some inequalities regarding the $s^{th}$ derivative of a polynomial having zeros outside a circle. Besides, our result gives interesting refinements of some well-known results.

متن کامل

On the polar derivative of a polynomial

For a polynomial p(z) of degree n, having all zeros in |z|< k, k< 1, Dewan et al [K. K. Dewan, N. Singh and A. Mir, Extension of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl. 352 (2009) 807-815] obtained inequality between the polar derivative of p(z) and maximum modulus of p(z). In this paper we improve and extend the above inequality. Our result generalizes certai...

متن کامل

Some compact generalization of inequalities for polynomials with prescribed zeros

‎Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial‎ ‎of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$‎. ‎In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$‎, ‎$k^2 leq rRleq R^2$ and for $Rleq r leq k$‎. ‎Our results refine and generalize certain well-known polynomial inequalities‎.

متن کامل

LINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS

We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008